

Goal-aware Analysis of Software License Risks

FitsumKifetew, Mirko Morandini, Denisse Munante, Anna Perini, Alberto Siena, and Angelo Susi

> FBK - Fondazione Bruno Kessler Center for Information Technology Software Engineering Group TRENTO, Italy

> iStar'17, Essen, Germany, 12.06.2017

Overview

- Introduction:
 - "Licences Risks in adoption of Open Source Software (OSS)"
- Risk Analysis Framework:
 - RiskML (Risk Modelling Language)
- Goal-aware license risk analysis
 - **SUPERSEDE Case**
 - **Preliminary Results**
- Conclusion

- Adopters' goals to adopt OSS:
 - reduction of cost and time to market
 - standards alignment
 - independence from producers
- In spite of these advantages: "Insufficient risk management is one of the five topmost mistakes to avoid when implementing OSS-based solutions" (Gartner 2011).

security risks! risk of project failure

License risks

bug risk aintenance risks missing certifications

Introduction: License risks

- OSS projects retain several different (missing) licenses. If it is not correctly managed, several license risks can be raised
 - licenses violations
 - potential legal issues
- It affects adopters' goals:
 - possible forms of free and commercial redistribution
 - compatibility with other licences (forms of attribution, license modifiability, ...)
 - market penetration
 - reputation

Objective: Prevent these risks

How can we prevent or warn of these risks?

Objective: Prevent these risks

How can we prevent or warn these risks?

Performing a OSS licensing analysis!

- Using a risk analysis framework
 - "RiskML+i*" is a framework to model and analyse risk exposure, and how it harms the adopters' goals.

What is "Risk"?

- Risk is the effect of **uncertainty** on objectives [ISO31000:2009]
- Risk is a combined measure representing :
 - (i) the adverse impacts that would arise if an event occurs &
 - (ii) the likelihood of its occurrence. [NIST 2012, CORAS]

RiskML: a modelling language that implements the notion of risk and binds it to OSS data

exposure

Situation: a state of affairs which allow a certain event to happen.

• $sat(\varphi)$: satisfaction of being in this state

Event: a change in the state of affairs, with a potential negative impact on goals.

• $lik(\varphi)$: *likelihood* of the event.

• $sev(\varphi)$: severity for a stakeholder's goals

Goal: a state of affairs desired by the stakeholder

Risk: expresses a lack of knowledge about some happening and its consequences, as a **tuple**

«situations, event, impact to goals»

Denisse Munante

Goal

Relations base on the propagation of **evidence**:

Indicate: indicator value \rightarrow evidence of situation satisfaction

Denisse Munante

RiskML: relations (2/5)

- Expose: higher satisfaction evidence \rightarrow higher likelihood
- Protect: higher satisfaction evidence → lower likelihood

RiskML: relations (3/5)

- Increase: higher satisfaction evidence \rightarrow higher severity
- Reduce: higher satisfaction evidence → lower severity

RiskML: relations (4/5)

Relations base on the propagation of effects between events.

Denisse Munante

RiskML: relations (5/5)

Impact: event exposure \rightarrow severity of impact to goal satisfaction

Risk evaluation

- SUPERSEDE goals to select appropriate licenses:
 - increase the project visibility and the acceptance in the industry
 - foster the integration with OSS community
 - avoid to generate legal issues
- RiskML was used to achieve these goals. Two main steps were performed:
 - (1) Modelling *licensing risks* to identify *indicators*, *situations*, events and goals => <u>SotA</u> + <u>OSS licensing experts</u> opinions
 - (2) Analysing the licensing risk exposure

- (1) Modelling licensing risks:
 - 3 goals, e.g. industry-friendly license selected
 - 17 licensing indicators, e.g. number of GPL licenses
 - 12 types of risks:
 - internal incompatibility,
 - external incompatibility,
 - lack of affinity,
 - future uncertainty,
 - reduced target license set,
 - declining components/target licenses,
 - infrequent components/target licenses,
 - lack of knowledge,
 - obsolete components/target licenses.

Denisse Munante

- (1) Modelling *licensing risks* gathered information:
 - 25 components
 - 194 OSS libraries:
 - 176 with 10 different known licenses:

ASL₂, CPL-EPL, MIT, ...

18 with licenses whose nature was either unknown or not captured by the model developed in RISCOSS (only 17 licenses were identified), for 1 license was not-founded.

Number of components	25
Number of OSS libraries	194
ASL2	67
BSD3	3
BSD4	1
CC3.0	1
CDDL	9
CPL-EPL	31
GPL2	4
LGPL2.1	3
LGPL3+	5
MIT	31
Other/unknown	18

- (2) Analysing the licensing risk exposure:
 - Objective: identify potential violations as cause of strategic failures.
 - Results: 5 license violations
 - The presence of components with GPL2 license, which are not compatible with non-GPL2 licenses.
 - Example: releasing a system (*DMGame* in Decision Making Package of SUPERSEDE) using Apache Software Foundation 2.0 (ASL2) but one of the components of the system has a GPL2 license.

Conclusion

- We introduced a licensing risk model to capture an important part of the expert knowledge.
- It allows to create risk awareness for non-expert analysts about the impact of risks on the organisational goals.
- In the SUPERSEDE context, RiskML allowed to obtain a preliminary result about licenses violations.

Questions, Feedback?